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Abstract—Due to the complex and non linear character,
wastewater treatment process is difficult to be controlled. And the
demand for removing the pollutant, especially for nitrogen (N)
and phosphorus (P), as well as reducing the cost of wastewater
treatment plant (WWTP) is an important research topic. This
paper applies PI control and decentralised model predictive
control control to the combined phosphorus removal Benchmark
Simulation Model 1 (BSM1-P) wastewater treatment process to
enhance the P removal. A default control strategy which contains
two control loops and is similar to the one given by the original
version of BSM1 was tested on BSM1-P. In addition, linear
models have been identified and model predictive controllers
implemented for each one of these loops. The simulation results
showed that the MPC controllers are able to the controller
performance in all the three weather conditions.

Index Terms—Nutrient removal, Wastewater treatment plants

I. INTRODUCTION

Over the past decades, as the human society has developed
rapidly, the demand for water resources has increased
considerably. However, the wastewater of industrial and
civil activity has not always been treated adequately. The
natural aquatic systems have a certain ability to recover from
the pollutants, but this is not always sufficient nowadays.
In Europe, the implementation of the Council Directive
91/271/EEC of 21 May 1991 concerning urban wastewater
treatment, has lead to new requirements for wastewater
treatment plants (WWTPs). Wastewater treatment plants
(WWTPs) are used worldwide to ensure the suitable water
quality for the receiving environment. Some of the pollutants
are reduced to allowed levels by the default WWTP structure
without applying any automatic control. However, other
pollutants are more difficult to be reduced. For this reason
and also to restrict operational costs, the application of
control engineering inWWTPs is playing an important role in
research in recent years [1] and [2].

Water quality parameters such as chemical oxygen
demand (COD), concentration of ammonia nitrogen (NH4),
total nitrogen (N) and total phosphorus (P) as long as
general effluent quality index (EQI) are the most important
components to represent the efficiency of a WWTP. The total
phosphorus and the total nitrogen are important pollution
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component which are responsible for the eutrophication.
Then, to get a good balance between P removal and N
removal a precise control method is highly required because,
for one hand the P removal procedure is more complicated
than COD removal and N removal. On the other hand,
the conditions that benefit P removal and N removal are
contradictory.

Different control strategies such as dissolved oxygen
(DO) control, model based control, sludge inventory control,
advanced nutrient removal control and respire meter based
control have been proposed to improve plant performance,
to optimise the energy costs and to reduce environmental
contamination. Authors in [3] show that by combining PI
control loops for DO, internal recycle and waste sludge,
a well balanced of effluent quality and operational cost
is achieved. And besides fuzzy control is also applied on
BSM1-P to reduce the general quality and the concentration
of phosphorus of effluent [4].In addition, by applying model
predictive control (MPC) and feedforward control, Santin et al
in [6] improved by more than 90% of the control performance
of nitrate concentration and dissolved oxygen under three
weather conditions as well as the effluent quality. In [7],
a fuzzy model-based predictive control paradigm achieved
satisfactory benefits in terms of both transient and steady
performances for the DO control. And in [8], an adaptive
predictive expert controllers to dissolved oxygen (DO) control
in the aerobic reactors of a wastewater treatment plant resulted
in more precise and stable DO control with a reducing energy
consumption. According to the control methods mentioned
before, we can see that present researches of applying
automatic control on wastewater treatment systems mostly
focus on certain system state like DO or nitrate nitrogen
concentration to improve the effluent quality, or avoiding
unnecessary costs. However, because of the complexity,
nonlinear of WWTPs, as well as many parameters contribute
to the quality and costs, it is difficult to find a direct solution
to improve these two overall indexes simultaneously.

Although the BSM1 modelling tool has been widely used in
the WWTP research community, it has a structural limitation
that it does not involve the P removal that should be taken
into account for achieving a more realistic simulation model.
To fill this gap, Gernaey and Jorgensen [5] developed a
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simulation benchmark which models the combined biological
P and N removal suitable for the anaerobic-anoxic-oxic
(AAO) processes, which could be regarded as benchmark
simulation model no.1 including P removal (BSM1-P). Two
PI controllers have been designed and tested for this process
and defined as the default control (DC).

II. PLANT DESCRIPTION AND PERFORMANCE INDEXES

A. Plant description

The processes in the WWTPs are simulated by two in-
ternationally accepted models: the Activated Sludge Model
No. 2d (ASM2d) for biological processes in the reactors and
the double-exponential settling velocity model for the vertical
transfers between layers in the settler. Nineteen componenets
and twenty one biological processes are designed in the
ASM2d. ASM2d divide the components into two sets: soluble
components (Si) and particulate components (Xi). The con-
ceptual components covers the essential biological subtance to
describe the wastewater treatment behavior: the microbiologies
to acomplish the pollutant removal (XA, XH and XPAO); the
carbon, nitrogen and phosphorus resource for their growth;
the unbiodegradable but plant performace affeted components
(SI , XI and XMeP ); the oxygen concentration that deter-
mines the growth environment (SO2

); and other performance
criteria related components such as XTSS . The bioprocess
1-3 represent the hydrolysis process in the aerobic, anoxic
and anaerobic conditions respectively; bioprocess 4-9 describe
the processes of facultative heterotrophic organisms; 10-17
represent the growth of phosphorus accumulating organisms;
18-19 explain the nitrification behavior; and 20-21 describe the
chemical precipitation of phosphates. The secondary settler is
modeled as a ten-layer unit, and to be realistic it is assumed
that biological reactions also occur here. In each layer the
concentration of all components, no matter the soluble ones or
the particulate ones, are assumed to be evenly ditributed, and
the transfer of particulate components only happens between
two layers. The calculation of particulate components concen-
tration is achieved by performing a solics balance around each
layer.

The benchmark simulation model no.1 with phosphorus
removal (BSM1-P) [5] used in this paper consists of seven
bioreactors followed by one secondary settler, as showed in
Fig. 1. The bioreactors consist of two anaerobic tanks (SO ≈ 0
and SNO ≈ 0), two anoxic tanks (SO ≈ 0 and SNO > 0)
and three aerobic tanks (SO > 0 and SNO > 0) where
air explosion occurs (see table I). In the first two tanks, the
phosphorus accumulating organisms (PAO) release phosphate,
SPO4

from poly-phosphate, XPP , and utilize the energy which
is from the hydrolysis of XPP to store cell external fermen-
tation products SA in the form of cell internal organic storage
material XPHA under the anaerobic condition. Meanwhile,
the process of denitrification in which the bacteria use nitrite
(SNO) as electron acceptor for growing and consequently
converse nitrite to dinitrogen happens in the following two
anoxic tanks. In the last three aerobic tanks the bactetia oxidize

ammonium to nitrite to obtain the energy necessary for growth.
It should be mentioned that both in the two anoxic tanks and in
the three aerobic tanks, PAO realize the growth by consuming
PHA as well as the storage SPO4

to XPP .

TABLE I
LIST OF STATE VARIABLES OF BSM1-P

notation definition unit
SO dissolved oxygen g(-COD)/m3

SF fermentable, readily biodegradable organic substrates g COD/m3

SA fermentation products, considered to be acetate gCOD/m3

SI inert soluble organic material gCOD/m3

SNH ammonium plus ammonia nitrogen g N/m3

SN2
dinitrogen g N/m3

SNO nitrate plus nitrite nitrogen g N/m3

SPO4
inorganic soluble phosphorus, g P/m3

SALK alkalinity of the wastewater mol HCO3/m3

XI inert particulate organic material g COD/m3

XS slowly biodegradable substrates g COD/m3

XH heterotrophic organisms g COD/m3

XPAO phosphate-accumulating organisms g COD/m3

XPP poly-phosphate g P/m3

XPHA a cell internal storage product of PAO g COD/m3

XA nitrifying organisms g COD/m3

XTSS total suspended solids, TSS g SS/m3

XMeOH metal-hydroxides g SS/m3

XMeP metal-phosphate g SS/m3

From Fig. 1 we can see wastewater enters the plant at
flow rate Qin; and there is an internal recycle (Qa) and a
sludge recycle (Qr). Qa brings back the wastewater flow
which contains suffucient nitrite back to the first anoxic tank
to realize the denitrification as well as supply electron acceptor
for PAO. Qr brings back particial concentrated sludge back to
the first anaerobic tank as well as the whole WWTP system.
Besides, a waste sludge flow (Qw) is pumped continuously
from the underflow of the sedimentation tank. In addition, the
flow from bioreactor No.7 to the secondary settler is designed
to feed the 6th layer. The parameters of BSM1-P are presented
in Table. II. In addition, the oxygentranster coefficients of
aerobic bioreactors that represnt the aeration rate are denoted
as KLa5 KLa6 and KLa7, respectively.

In this work, the controlled inputs are the internal recycle
flow rate Qa and the oxygen transfer coefficient in the last
tank KLa7.

Fig. 1. Layout of BSM1-P
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TABLE II
BSM1-P PARAMETERS

volume of tank1 (V1) 500 m3

volume of tank2 (V2) 750 m3

volume of tank3 (V3) 750 m3

volume of tank4 (V4) 750 m3

volume of tank5 (V5) 1333 m3

volume of tank6 (V6) 1333 m3

volume of tank7 (V7) 1333 m3

volume of settler 6000 m3

Qa under the dry weather condition 55338 m3/d
Qr under the dry weather condition 18446 m3/d
Qw 400 m3/d

B. Performance indexes

Different criteria are stablished to evaluate and compare the
performance of the proposed control configurations. The pro-
posed indexes measure the settler effulent quality, the overall
operation costs as well as the set-poit tracking performace of
the controler

To evaluate the general quality of the effluent, the effluent
quality index (EQI) is defined. This index is designed to
include most of the important pollutant components and could
be related with the fines to be paid according to the discharge
of pollution. The way to calculate EQI is:

EQI =
1

1000 · T

∫ tf

t0

(BTSS · TSS(t) + BCOD · COD(t)

+ BNKj · SNH(t) + BNO · SNO(t)

+ BBOD5
·BOD5(t) + BPtot

· Ptot(t)) ·Q(t) · dt
(1)

where, Bi are weighting factors (expressed in g pollution unit
g−1) which are showed in Table III, T is the total time (7
days), t0 and tf are starting and ending time respectively.
TSS is total suspended solid, COD is chemical oxygen de-
mand, BOD5 is biological oxygen demand and Ptot is total
phosphorus.

TABLE III
Bi VALUES

Factor BTSS BCOD BNKj BNO BBOD5
BPtot

Value 2 1 30 10 2 20

The operational cost is also an important aspect to be
concerned when the control strategy is evaluated. The overall
operational cost index (OCI) is defined as:

OCI = AE +PE + 5 ·SP + 3 ·EC + 1.5 ·EM +ME (2)

where AE (kWh/d) is the aeration energy of aerobic tanks, PE
(kWh/d) is the pumping energy for the recycles and wastewater
transfer between tanks, SP (kg/d) is the sludge production to
be disposed, EC (kg/d) is external carbon source, EM (kg/d)
is the external metal source and ME (kWh/d) is the mixing

energy. In this paper, we have considered that there are neither
external carbon source nor external metal source, thus EC and
EM are equal to 0.

The aeration energy AE is calculated as:

AE =
Ssat
o

1800T

∫ tf

t0

7∑
i=5

Vi ·KLai(t) · dt (3)

where Ssat
o denotes the saturation concentration for oxygen

whose value is 8g/m3, and KLai (i=1,...,7) denotes the oxygen
transfer coefficient in the i-th bioreactor.

The pumping energy PE is calculated as:

PE =
1

T

∫ tf

t0

(0.004Qa(t)+0.008Qr(t)+0.05Qw(t))dt (4)

The sludge production SP includes the total suspended solid
from wastage and the solids accumulated in the system over
the estimated time:

SP =
1

T
· (TSSa(tf )− TSSa(t0) + TSSs(tf )− TSSs(t0)

+

∫ tf

t0

TSSw ·Qw · dt)
(5)

where TSSa is the concentration of suspended solids in the
reactors, TSSs is the amount of solids in the settler and TSSw

is the amount of solids in the wastage.
The mixing energy ME is a function of the bioreactor

volumes and oxygen transfer coefficients to avoid the solid
components settling in the anaerobic and anoxic tanks:

ME =
1

T

∫ tf

t0

ME(t)dt (6)

where

ME(t) = 24

5∑
i=1

{
0.005 · Vi if KLai(t) < 20d−1

0 if KLai(t) ≥ 20d−1

(7)
There are several ways to evaluate the output set-point

tracking performance of the controllers. In this paper, we
choose the Integral of the Squared Error (ISE) as the criterion:

ISE =

∫ tf

t0

(Sset
i − Si)

2dt (8)

where Si is the measured value of concerned component (DO
and SNO in this paper), and Sset

i is the set-point.

III. CONTROL STRATEGIES

In this work, we propose to compare the basic default PI
based control algorithms with a decentralised MPC algorithm
for phosphorus removal by using the BSM1-P. First, we give
a class of nonlinear system in the general compact form to
describe BSM1-P:
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ẋ(t) = f(x(t)) + g(x(t))u(t)
y(t) = h(x(t))

(9)

where x is the vector of process states variables,
u = [u1 u2]T = [KLa7 Qa]T denotes the controlled
input values, y = [y1 y2]T = [SO,7 SNO,3]T denotes the
controlled outputs vector.

We assume that the entire process variables are sampled at
time instants tk, where tk ≥ 0, such that tk = t0 + k∆t, t0 is
the initial time and ∆t is the sampling time interval and k is a
positive integer. At each time instant tk, the vector of process
states is denoted as x(tk), the vector of manipulated inputs
is denoted by u(tk) and the vector of controlled outputs is
dented as y(tk).

A. Proportional-Integral control

Fig. 2. Description of DF control strategy of BSM1-P

We present a PI control strategy which contains two control
loops (see Fig. 2): the first one is a DO controller to regulate
SO,7 at a set-point by manipulating KLa7, and the second
one is to maintain SNO,3 at a set-point by manipulation of
Qa. The two PI controllers are designed by means of the
following equations:

u1(tk) = Kp1[(yset1 (tk)−y1(tk))+
1

Ti1

k∑
j=0

(yset1 (tj)−y1(tj))]

(10)

u2(tk) = Kp2[(yset2 (tk)−y2(tk))+
1

Ti2

k∑
j=0

(yset2 (tj)−y2(tj))]

(11)
where yset1 (t) and yset2 (t) are the set-point trajectories of SO,7

and SNO,3, respectively. Kp1 and Ti1 are the proportional
gain and the integral time constant of the controller associated
with SO,7; Kp2 and Ti2 are the corresponding parameters of
the controller associated with SNO,3.

B. Model Predictive Control

Model Predictive Control (MPC) refers to a large class of
computer control methods which make an explicit use of a
process model to predict the future response of the plant.
An algorithmic principle for MPC is described as followed:
at each time instant tk, an error e(tk) between the process
real output y(tk) and the predicted output ỹ(tk) based on
past inputs is calculated. The trajectories for ỹ(tk) and e(tk)
are also calculated. Then the MPC control law is generated
for making the predictive future output to match with the
reference trajectory yset(tk).

For any calculated set of present and future control
moves u(tk), u(tk+1), ... , u(tk+m−1) the future behavior
of the process outputs computed at the time instant tk are
denoted as y(tk+1|tk), y(tk+2|tk), ? , y(tk+p|tk) and can
be predicted by a horizon p.The sequence of future control
signals is calculated by minimizing an objective function
J(y(tk), u(tk)) as follows:

min
∆u(tk+1|tk),i=0,1,...,m−1

J(y(tk), u(tk)) (12)

where

J =

k+p∑
i=k

(yset − y(ti))
T Γy(yset − y(ti)) (13a)

+

k+m∑
j=k

∆u(tj)Γu∆u(tj) (13b)

s.t. ˙̃x(t) = f(x̃(t)) + g(x̃(t) · u(t)) (13c)
ỹ = h(x̃(t)) (13d)
∆u(tk) = u(tk)− u(tk−1) (13e)
u(t) ∈ U (13f)
y(t) ∈ Y (13g)

where Γy , Γu ≥ 0 are weighting matrices. Equations
13b and 13c represnt the model of the plant used for the
predictions. x̃(t) and ỹ(t) are the predicted state trajectory
and the predicted output, respectively, for the input trajectory
cumputed by the optimization problem. Equation 13d denotes
the control increment at time interval tk. Equation 13e and
13f represent the constraints of the manipulated imputs and
the constaints of the outputs, respectively.

It has to be noticed that although m control moves u(tk),
u(tk+1), ... , u(tk+m−1) are computed, only the first one
(u(tk)) is applied to the WWTP. Then, in the next control
step, the same calculations are repeated according to the new
measured (real) system outputs to obtain the manipulated
variables for this time instant. The predicted process outputs
depend on the identified model, i.e., equations (1b) and (1c).
and the current measurements, as well as the unmeasured
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disturbances if are considered.

The sampling time interval ∆t, the control horizon m,
the prediction horizon p, the input rate weight Γu and the
output rate weight Γy can be used as tunning parameters
for the process to perform as required. ∆t has a significant
effect on the controler operation. High values of ∆t can give
poor control performance, mainly when there are important
input disturbances. On the contrary, low values of ∆t can
produce fast changes in the actuators with the consequent
high energy consumption. Γu is the parameter to avoid too
quick changes of input or strong oscillations in the actuators,
however a higher Γu will lead to a slower response of the
actuators and hence a worse control performance. Γy is the
weight for reducing the errors of controlled variables which
is most important for a controller, thus Γy should be high
enough to assure the control performance. The prediction
horizon p has the following efect: if a high value of p is
taken it will originate a smooth response of the process and
an increase of the computational time; on the other hand,
small values reduce the computational effort at espenses of a
possible oscillatory process response. The control horizon m
imporves the performance of the precess output as the value
of m increases, at the espense of additional computation
time; on the other hand, small values may result in oscillatory
responses.

In this work, we design two seperate single input single
output MPC on BSM1-P: the first one is DO controller to
regulate SO,7 by manipulating KLa7, and the second one is
to maintain SNO,3 at a set-point by manipulation of Qa (see
Fig 3).

Fig. 3. Model predictive control of BSM1-P

IV. SIMULATION RESULTS

In this section we apply the control methods explained
in the previous section on BSM1-P under three weather
conditions (dry, rain and storm weather) and we compare the
simulation results. The control objects are: by applying PI
and MPC, we regulate SO,7 and SNO,3 at the set point. The
plant is simulated for 2 weeks and the results of the last week
is used to evaluate the performance of the controllers and the
plant. Ideal sensors are considered in the simulation process.

In the design of PI, there are two control loops: the DO
controller for bioreactor 7 manipulates KLa7 to maintain the
dissolved oxygen (SO,7) at the set-point Sset

O,7=2 g(-COD)/m3,
and the internal recycle controller to maintain the nitrate
concentration of the third bioreactor SNO,3 at the set-point
Sset
NO,3=1gN/m3.

The MPC is designed as two separate single input single
out MPC controllers as shown in Figure 3. The models (13)
for the MPC are developed using identification techniques
based on process response data [17]. To obtain the identified
model for DO MPC controller, we use a random signal input
of KLa7, with a mean value of 240 d−1 and a variance
of 10%; to get the identified model for NO3 controller, we
also chose a random signal input of Qintr with a mean
value of 55338 m3/d and 10% of variance. The second order
state-space model for DO is as follows:

A =

[
−0.1322 0.3086

1.286 −3.372

]
B =

[
0.009144 −1164
−0.1014 13230

]
C = [1.849 − 0.3041],

D = 0

(14)

similarly, the identified model for NO3 obtained is:

A =

[
−0.002024 0.004699

0.02789 −1.331

]
B =

[
3.902× 10−6

−0.001099

]
C = [9.062 − 0.01557],

D = 0

(15)

The parameters of PI controllers are: 1) for DO controller
Kp=500 and Ti=0.0001; 2) for SNO,3 controller, Kp=15000
and Ti=0.05. And The parameters chosen for tuning MPC are
m = 5 and p = 20, ∆t = 0.00025days (21.6s). The weights
for MPC controller are: Γy = 1 and Γu = 0.0001.

The simulation results provided by the PI and the MPC
designs under dry weather, rain weather and storm weather
are shown in Fig.4, Fig.5 and Fig.6. The numeric comparison
are shown in Table IV. It can be observed that by applying
MPC controller, in a dry weather scenario, the ISE of SNO3
reduces 99.8% and ISE of DO7 reduces 98.98%. The control
performance results in a marginal 0.093% OCI reduction
at the expense of a 0.26% EQI increment. Under rain and
storm weather conditions, the similar improvements are also
obtained: ISE reduces in 99.4% (rain) and 99.8% (storm) for
SNO,3 control and reduces in 93% (both rain and storm) for
SO,7 control. A marginal 0.02% (rain) and 0.017% (storm)
OCI reduction is obtained at the expense of a 0.1% (rain) and
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0.14% (storm) EQI increment.

In view of the above comparison, it can be concluded that
the designed MPC does not entail significant improvements
in performance compared to the PI controller, if we look at
the aggregated indexes. However, if we look at the effluent
concentrations for the major components of interest: P , NHe

and Ntot, e we can observe that with the MPC it is possible
to improve a little bit the N related compounds concentrations
while keeping the P levels at similar values. At least not
worse. Therefore, achieving better tradeoff. An example for
the rein influent case is shown in figures (7), (8) and (9).

Fig. 4. Control performance of PI and MPC under dry weather

Fig. 5. Control performance of PI and MPC under rain weather

V. CONCLUSIONS

In this work, model predictive control is implemented on
BSM1-P, and the results are evaluated and compared with
PI and MPC. First, we propose PI and MPC to regulate

Fig. 6. Control performance of PI and MPC under storm weather

Fig. 7. Comparison of effluent concentration regarding P for rain influent

dissolved oxygen of bioreactor 7 and nitrate nitrogen of
bioreactor 3 at the set point.The simulation results show that
both of them are able to achieve the control purpose, and
further, the MPC controllers are able to improve more than
95% of the controller performance in all the three weather
conditions.

Fig. 8. Comparison of effluent concentration regarding NHe for rain influent
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TABLE IV
COMPARISON OF ISE, EQI, OCI WITH PI AND MPC UNDER DRY, RAIN AND STORM WEATHER

PI MPC %
Dry weather
ISE(SNO3) 0.159 0.000194 -99.8%
ISE(DO7) 0.00948 0.0000963 -98.98%
EQI 4495.64 4507.182 +0.26%
OCI 20628.88 20609.62 -0.093%

Rain weather
ISE(SNO3) 0.325 0.00187 -99.4%
ISE(DO7) 0.0119 0.0000803 -99.3%
EQI 4919.16 4914.16 +0.1%
OCI 20187.22 20191.18 -0.02%

Storm weather
ISE(SNO3) 0.323 0.000623 -99.8%
ISE(DO7) 0.0144 0.000102 -99.3%
EQI 4695.01 4701.69 +0.14%
OCI 21632.73 21628.98 -0.017%

Fig. 9. Comparison of effluent concentration regarding Ntot,e for rain influent
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